Source code for easycv.core.evaluation.faceid_pair_eval

# Copyright (c) Alibaba, Inc. and its affiliates.

import numpy as np
import sklearn
from scipy import interpolate
from sklearn.decomposition import PCA
from sklearn.model_selection import KFold

from .base_evaluator import Evaluator
from .builder import EVALUATORS
from .metric_registry import METRICS


[docs]def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, pca=0): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) best_thresholds = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) # print('pca', pca) if pca == 0: diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # print('train_set', train_set) # print('test_set', test_set) if pca > 0: print('doing pca on', fold_idx) embed1_train = embeddings1[train_set] embed2_train = embeddings2[train_set] _embed_train = np.concatenate((embed1_train, embed2_train), axis=0) # print(_embed_train.shape) pca_model = PCA(n_components=pca) pca_model.fit(_embed_train) embed1 = pca_model.transform(embeddings1) embed2 = pca_model.transform(embeddings2) embed1 = sklearn.preprocessing.normalize(embed1) embed2 = sklearn.preprocessing.normalize(embed2) # print(embed1.shape, embed2.shape) diff = np.subtract(embed1, embed2) dist = np.sum(np.square(diff), 1) # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = calculate_accuracy( threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) best_thresholds[fold_idx] = thresholds[best_threshold_index] for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy( threshold, dist[test_set], actual_issame[test_set]) _, _, accuracy[fold_idx] = calculate_accuracy( thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) return tpr, fpr, accuracy, best_thresholds
[docs]def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum( np.logical_and( np.logical_not(predict_issame), np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) acc = float(tp + tn) / dist.size return tpr, fpr, acc
[docs]def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): _, far_train[threshold_idx] = calculate_val_far( threshold, dist[train_set], actual_issame[train_set]) if np.max(far_train) >= far_target: f = interpolate.interp1d(far_train, thresholds, kind='slinear') threshold = f(far_target) else: threshold = 0.0 val[fold_idx], far[fold_idx] = calculate_val_far( threshold, dist[test_set], actual_issame[test_set]) val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) return val_mean, val_std, far_mean
[docs]def calculate_val_far(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) false_accept = np.sum( np.logical_and(predict_issame, np.logical_not(actual_issame))) n_same = np.sum(actual_issame) n_diff = np.sum(np.logical_not(actual_issame)) val = float(true_accept) / float(n_same) far = float(false_accept) / float(n_diff) return val, far
[docs]def faceid_evaluate(embeddings, actual_issame, nrof_folds=10, pca=0): ''' Do Kfold=nrof_folds faceid pair-match test for embeddings Args: embeddings: [N x C] inputs embedding of all dataset actual_issame: [N/2, 1] label of is match nrof_folds: KFold number pca : > 0 means, do pca and trans embedding to [N, pca] feature Return: KFold average best accuracy and best threshold ''' # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) # thresholds = np.arange(0, 0.1, 0.001) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy, best_thresholds = calculate_roc( thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds, pca=pca) # return tpr, fpr, accuracy, best_thresholds return accuracy.mean(), best_thresholds.mean()
[docs]@EVALUATORS.register_module class FaceIDPairEvaluator(Evaluator): """ FaceIDPairEvaluator evaluator. Input nx2 pairs and label, kfold thresholds search and return average best accuracy """
[docs] def __init__(self, dataset_name=None, metric_names=['acc'], kfold=10, pca=0): ''' Faceid small dataset evaluator, do pair match validation Args: dataset_name : faceid small validate set name, include [lfw, agedb_30, cfp_ff, cfp_fw, calfw] kfold : Kfold for train/val split pca : pca dimensions, if > 0, do PCA for input feature, transfer to [n, pca] Return: None ''' self.kfold = kfold self.pca = pca self.dataset_name = dataset_name super(FaceIDPairEvaluator, self).__init__(dataset_name, metric_names)
def _evaluate_impl(self, predictions, gt_labels): ''' python evaluation code which will be run after all test batched data are predicted Args: predictions: dict of tensor with shape NxC, from each faceid pair feature (N/2) pairs gt_labels: tensor with shape Nx1 Return: a dict, each key is metric_name, value is metric value ''' if type(predictions) == dict: predictions = predictions['neck'] val = sklearn.preprocessing.normalize(predictions) accuracy, threshold = faceid_evaluate(val, gt_labels[0::2], self.kfold, self.pca) eval_res = {'acc': accuracy} return eval_res
METRICS.register_default_best_metric(FaceIDPairEvaluator, 'acc', 'max')