Source code for easycv.core.optimizer.ranger

# Copyright (c) Alibaba, Inc. and its affiliates.
import math

import torch
from torch.optim.optimizer import Optimizer

from easycv.framework.errors import ValueError


[docs]def centralized_gradient(x, use_gc=True, gc_conv_only=False): '''credit - https://github.com/Yonghongwei/Gradient-Centralization ''' if use_gc: if gc_conv_only: if len(list(x.size())) > 3: x.add_(-x.mean( dim=tuple(range(1, len(list(x.size())))), keepdim=True)) else: if len(list(x.size())) > 1: x.add_(-x.mean( dim=tuple(range(1, len(list(x.size())))), keepdim=True)) return x
[docs]class Ranger(Optimizer): """ Adam+LookAhead: refer to https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer """
[docs] def __init__( self, params, lr=1e-3, # lr alpha=0.5, k=6, N_sma_threshhold=5, # Ranger options betas=(.95, 0.999), eps=1e-5, weight_decay=0, # Adam options use_gc=True, # Gradient centralization on or off, applied to conv layers only or conv + fc layers gc_conv_only=False, gc_loc=True): # parameter checks if not 0.0 <= alpha <= 1.0: raise ValueError(f'Invalid slow update rate: {alpha}') if not 1 <= k: raise ValueError(f'Invalid lookahead steps: {k}') if not lr > 0: raise ValueError(f'Invalid Learning Rate: {lr}') if not eps > 0: raise ValueError(f'Invalid eps: {eps}') # parameter comments: # beta1 (momentum) of .95 seems to work better than .90... # N_sma_threshold of 5 seems better in testing than 4. # In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you. # prep defaults and init torch.optim base defaults = dict( lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults) # adjustable threshold self.N_sma_threshhold = N_sma_threshhold # look ahead params self.alpha = alpha self.k = k # radam buffer for state self.radam_buffer = [[None, None, None] for ind in range(10)] # gc on or off self.gc_loc = gc_loc self.use_gc = use_gc self.gc_conv_only = gc_conv_only # level of gradient centralization # self.gc_gradient_threshold = 3 if gc_conv_only else 1 print( f'Ranger optimizer loaded. \nGradient Centralization usage = {self.use_gc}' ) if (self.use_gc and not self.gc_conv_only): print('GC applied to both conv and fc layers') elif (self.use_gc and self.gc_conv_only): print('GC applied to conv layers only')
def __getstate__(self): state = super(Ranger, self).__getstate__() state.update({ 'N_sma_threshhold': self.N_sma_threshhold, 'alpha': self.alpha, 'k': self.k, 'radam_buffer': self.radam_buffer, 'gc_loc': self.gc_loc, 'use_gc': self.use_gc, 'gc_conv_only': self.gc_conv_only }) return state def __setstate__(self, state): print('set state called') super(Ranger, self).__setstate__(state)
[docs] def step(self, closure=None): loss = None # note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure. # Uncomment if you need to use the actual closure... # if closure is not None: # loss = closure() # Evaluate averages and grad, update param tensors for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError( 'Ranger optimizer does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] # get state dict for this param if len( state ) == 0: # if first time to run...init dictionary with our desired entries # if self.first_run_check==0: # self.first_run_check=1 # print("Initializing slow buffer...should not see this at load from saved model!") state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) # look ahead weight storage now in state dict state['slow_buffer'] = torch.empty_like(p.data) state['slow_buffer'].copy_(p.data) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as( p_data_fp32) # begin computations exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] # GC operation for Conv layers and FC layers # if grad.dim() > self.gc_gradient_threshold: # grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True)) if self.gc_loc: grad = centralized_gradient( grad, use_gc=self.use_gc, gc_conv_only=self.gc_conv_only) state['step'] += 1 # compute variance mov avg exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # compute mean moving avg exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) buffered = self.radam_buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2**state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * \ state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma if N_sma > self.N_sma_threshhold: step_size = math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1**state['step']) else: step_size = 1.0 / (1 - beta1**state['step']) buffered[2] = step_size # if group['weight_decay'] != 0: # p_data_fp32.add_(-group['weight_decay'] # * group['lr'], p_data_fp32) # apply lr if N_sma > self.N_sma_threshhold: denom = exp_avg_sq.sqrt().add_(group['eps']) G_grad = exp_avg / denom else: G_grad = exp_avg if group['weight_decay'] != 0: G_grad.add_(p_data_fp32, alpha=group['weight_decay']) # GC operation if not self.gc_loc: G_grad = centralized_gradient( G_grad, use_gc=self.use_gc, gc_conv_only=self.gc_conv_only) p_data_fp32.add_(G_grad, alpha=-step_size * group['lr']) p.data.copy_(p_data_fp32) # integrated look ahead... # we do it at the param level instead of group level if state['step'] % group['k'] == 0: # get access to slow param tensor slow_p = state['slow_buffer'] # (fast weights - slow weights) * alpha slow_p.add_(p.data - slow_p, alpha=self.alpha) # copy interpolated weights to RAdam param tensor p.data.copy_(slow_p) return loss