Source code for easycv.datasets.loader.sampler

# Copyright (c) Alibaba, Inc. and its affiliates.
from __future__ import division
import math
import random

import numpy as np
import torch
import torch.distributed as dist
from mmcv.runner import get_dist_info
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import RandomSampler, Sampler

from easycv.datasets.registry import SAMPLERS
from easycv.framework.errors import ValueError
from easycv.utils.dist_utils import local_rank

SAMPLERS.register_module(RandomSampler)


[docs]@SAMPLERS.register_module() class DistributedMPSampler(_DistributedSampler):
[docs] def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, split_huge_listfile_byrank=False, **kwargs): """ A Distribute sampler which support sample m instance from one class once for classification dataset dataset: pytorch dataset object num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. shuffle (optional): If true (default), sampler will shuffle the indices split_huge_listfile_byrank: if split, return all indice for each rank, because list for each rank has been split before build dataset in dist training """ super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.local_rank = local_rank() self.shuffle = shuffle self.unif_sampling_flag = False self.split_huge_listfile_byrank = split_huge_listfile_byrank self.get_label_dict()
def __iter__(self): # deterministically shuffle based on epoch indice_list = self.generate_indice() return iter(indice_list)
[docs] def generate_indice(self): if self.shuffle: random.shuffle(self.label_list) for k in self.label_dict.keys(): random.shuffle(self.label_dict[k]) this_label_list, this_label_list_size = self.calculate_this_label_list( ) if self.rank == 0: print('Each epoch has %d buckets of M imgs for per class' % (self.buckets_num)) m_per_class = self.dataset.m_per_class indice_list = [] # [this_label_list_size x (m * buckets_num)] for label in this_label_list: idx_list = self.label_dict[label] if len(idx_list) < self.buckets_num * m_per_class: # this place need(could) add more random . idx_list = idx_list * int(self.buckets_num * m_per_class / len(idx_list) + 1) idx_list = idx_list[0:self.buckets_num * m_per_class] indice_list.append(idx_list) indice_list = np.array(indice_list).reshape( (this_label_list_size * self.buckets_num), m_per_class) if self.shuffle: np.random.shuffle(indice_list) indice_list = list(indice_list.astype(int).flatten()) return indice_list
[docs] def get_label_dict(self): self.label_dict = {} self.label_list = [] if not self.dataset.data_source.has_labels: raise ValueError( 'MPSampler need initial with classification datasets which has label!' ) for idx, label in enumerate(self.dataset.data_source.labels): if label in self.label_dict.keys(): self.label_dict[label].append(idx) else: self.label_dict[label] = [idx] self.label_list.append(label) if self.rank == 0: print( self.rank, ' : Total %d Label in %s' % (len(self.label_list), type(self.dataset))) # calculate the After mpsampler, dataset length change and buckets_num self.calculate_this_label_list() if self.rank == 0: print('Before original dataset length is %d' % len(self.dataset.data_source)) print('After MPRefine dataset length is %d' % (self.length)) print('Total %d Label in %s' % (len(self.label_list), type(self.dataset))) return
[docs] def calculate_this_label_list(self): label_size = len(self.label_list) if not self.split_huge_listfile_byrank: refine_label_size = int(1 + label_size / self.num_replicas) * self.num_replicas refine_label_list = self.label_list + self.label_list[0:( refine_label_size - label_size)] this_label_list_size = int( len(refine_label_list) / self.num_replicas) this_label_list = refine_label_list[self.rank * this_label_list_size: (self.rank + 1) * this_label_list_size] m_per_class = self.dataset.m_per_class self.buckets_num = int( int(len(self.dataset.data_source) / self.num_replicas) / (m_per_class * this_label_list_size)) + 1 self.length = self.buckets_num * m_per_class * int( 1 + len(self.label_list) / self.num_replicas) # self.num_replicas else: this_label_list = self.label_list this_label_list_size = label_size m_per_class = self.dataset.m_per_class # this is a huge bug for split situation buckets_num = torch.Tensor([ int( len(self.dataset.data_source) / (m_per_class * this_label_list_size)) ]).to(self.local_rank) torch.distributed.all_reduce(buckets_num, torch.distributed.ReduceOp.MIN) torch.distributed.barrier() self.buckets_num = int(max(buckets_num, 1)) self.length = self.buckets_num * m_per_class * int( len(self.label_list)) return this_label_list, this_label_list_size
def __len__(self): return self.length
[docs]@SAMPLERS.register_module() class DistributedSampler(_DistributedSampler):
[docs] def __init__( self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0, replace=False, split_huge_listfile_byrank=False, ): """ A Distribute sampler which support sample m instance from one class once for classification dataset Args: dataset: pytorch dataset object num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. shuffle (optional): If true (default), sampler will shuffle the indices seed (int, Optional): The seed. Default to 0. split_huge_listfile_byrank: if split, return all indice for each rank, because list for each rank has been split before build dataset in dist training """ super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle self.seed = seed self.replace = replace self.unif_sampling_flag = False self.split_huge_listfile_byrank = split_huge_listfile_byrank
def __iter__(self): # deterministically shuffle based on epoch if not self.unif_sampling_flag: self.generate_new_list() else: self.unif_sampling_flag = False if not self.split_huge_listfile_byrank: return iter( self.indices[self.rank * self.num_samples:(self.rank + 1) * self.num_samples]) else: return iter(self.indices)
[docs] def generate_new_list(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch + self.seed) if self.replace: indices = torch.randint( low=0, high=len(self.dataset), size=(len(self.dataset), ), generator=g).tolist() else: indices = torch.randperm( len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size self.indices = indices
[docs] def set_uniform_indices(self, labels, num_classes): self.unif_sampling_flag = True assert self.shuffle, 'Using uniform sampling, the indices must be shuffled.' np.random.seed(self.epoch) assert (len(labels) == len(self.dataset)) N = len(labels) size_per_label = int(N / num_classes) + 1 indices = [] images_lists = [[] for i in range(num_classes)] for i, l in enumerate(labels): images_lists[l].append(i) for i, l in enumerate(images_lists): if len(l) == 0: continue indices.extend( np.random.choice( l, size_per_label, replace=(len(l) <= size_per_label))) indices = np.array(indices) np.random.shuffle(indices) indices = indices[:N].astype(np.int64).tolist() # add extra samples to make it evenly divisible assert len(indices) <= self.total_size, \ '{} vs {}'.format(len(indices), self.total_size) indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size, \ '{} vs {}'.format(len(indices), self.total_size) self.indices = indices
def __len__(self): return self.num_samples if not self.split_huge_listfile_byrank else self.num_samples * self.num_replicas
[docs]@SAMPLERS.register_module() class GroupSampler(Sampler):
[docs] def __init__(self, dataset, samples_per_gpu=1): assert hasattr(dataset, 'flag') self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.flag = dataset.flag.astype(np.int64) self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, size in enumerate(self.group_sizes): self.num_samples += int(np.ceil( size / self.samples_per_gpu)) * self.samples_per_gpu
def __iter__(self): indices = [] for i, size in enumerate(self.group_sizes): if size == 0: continue indice = np.where(self.flag == i)[0] assert len(indice) == size np.random.shuffle(indice) num_extra = int(np.ceil(size / self.samples_per_gpu) ) * self.samples_per_gpu - len(indice) indice = np.concatenate( [indice, np.random.choice(indice, num_extra)]) indices.append(indice) indices = np.concatenate(indices) indices = [ indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] for i in np.random.permutation( range(len(indices) // self.samples_per_gpu)) ] indices = np.concatenate(indices) indices = indices.astype(np.int64).tolist() assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples
[docs]@SAMPLERS.register_module() class DistributedGroupSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Args: dataset: Dataset used for sampling. seed (int, Optional): The seed. Default to 0. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """
[docs] def __init__(self, dataset, samples_per_gpu=1, seed=0, num_replicas=None, rank=None): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.seed = seed self.num_replicas = num_replicas self.rank = rank self.epoch = 0 assert hasattr(self.dataset, 'flag') self.flag = self.dataset.flag self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, j in enumerate(self.group_sizes): self.num_samples += int( math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu / self.num_replicas)) * self.samples_per_gpu self.total_size = self.num_samples * self.num_replicas
def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch + self.seed) indices = [] for i, size in enumerate(self.group_sizes): if size > 0: indice = np.where(self.flag == i)[0] assert len(indice) == size indice = indice[list(torch.randperm(int(size), generator=g))].tolist() extra = int( math.ceil( size * 1.0 / self.samples_per_gpu / self.num_replicas) ) * self.samples_per_gpu * self.num_replicas - len(indice) # pad indice tmp = indice.copy() for _ in range(extra // size): indice.extend(tmp) indice.extend(tmp[:extra % size]) indices.extend(indice) assert len(indices) == self.total_size indices = [ indices[j] for i in list( torch.randperm( len(indices) // self.samples_per_gpu, generator=g)) for j in range(i * self.samples_per_gpu, (i + 1) * self.samples_per_gpu) ] # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples
[docs] def set_epoch(self, epoch): self.epoch = epoch
[docs]@SAMPLERS.register_module() class DistributedGivenIterationSampler(Sampler):
[docs] def __init__(self, dataset, total_iter, batch_size, num_replicas=None, rank=None, last_iter=-1): rank, world_size = get_dist_info() assert rank < world_size self.dataset = dataset self.total_iter = total_iter self.batch_size = batch_size self.world_size = world_size self.rank = rank self.last_iter = last_iter self.total_size = self.total_iter * self.batch_size self.indices = self.gen_new_list()
def __iter__(self): return iter(self.indices[(self.last_iter + 1) * self.batch_size:])
[docs] def set_uniform_indices(self, labels, num_classes): np.random.seed(0) assert (len(labels) == len(self.dataset)) N = len(labels) size_per_label = int(N / num_classes) + 1 indices = [] images_lists = [[] for i in range(num_classes)] for i, l in enumerate(labels): images_lists[l].append(i) for i, l in enumerate(images_lists): if len(l) == 0: continue indices.extend( np.random.choice( l, size_per_label, replace=(len(l) <= size_per_label))) indices = np.array(indices) np.random.shuffle(indices) indices = indices[:N].astype(np.int64) # repeat all_size = self.total_size * self.world_size indices = indices[:all_size] num_repeat = (all_size - 1) // indices.shape[0] + 1 indices = np.tile(indices, num_repeat) indices = indices[:all_size] np.random.shuffle(indices) # slice beg = self.total_size * self.rank indices = indices[beg:beg + self.total_size] assert len(indices) == self.total_size # set self.indices = indices
[docs] def gen_new_list(self): # each process shuffle all list with same seed, and pick one piece according to rank np.random.seed(0) all_size = self.total_size * self.world_size indices = np.arange(len(self.dataset)) indices = indices[:all_size] num_repeat = (all_size - 1) // indices.shape[0] + 1 indices = np.tile(indices, num_repeat) indices = indices[:all_size] np.random.shuffle(indices) beg = self.total_size * self.rank indices = indices[beg:beg + self.total_size] assert len(indices) == self.total_size return indices
def __len__(self): # note here we do not take last iter into consideration, since __len__ # should only be used for displaying, the correct remaining size is # handled by dataloader # return self.total_size - (self.last_iter+1)*self.batch_size return self.total_size
[docs] def set_epoch(self, epoch): pass
[docs]@SAMPLERS.register_module() class RASampler(torch.utils.data.Sampler): """Sampler that restricts data loading to a subset of the dataset for distributed, with repeated augmentation. It ensures that different each augmented version of a sample will be visible to a different process (GPU) Heavily based on torch.utils.data.DistributedSampler """
[docs] def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, num_repeats: int = 3, **kwargs): if num_replicas is None: if not dist.is_available(): raise RuntimeError( 'Requires distributed package to be available') num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError( 'Requires distributed package to be available') rank = dist.get_rank() if num_repeats < 1: raise ValueError('num_repeats should be greater than 0') self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.num_repeats = num_repeats self.epoch = 0 self.num_samples = int( math.ceil( len(self.dataset) * self.num_repeats / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas # self.num_selected_samples = int(math.ceil(len(self.dataset) / self.num_replicas)) self.num_selected_samples = int( math.floor(len(self.dataset) // 256 * 256 / self.num_replicas)) self.shuffle = shuffle
def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g) else: indices = torch.arange(start=0, end=len(self.dataset)) # add extra samples to make it evenly divisible indices = torch.repeat_interleave( indices, repeats=self.num_repeats, dim=0).tolist() padding_size: int = self.total_size - len(indices) if padding_size > 0: indices += indices[:padding_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices[:self.num_selected_samples]) def __len__(self): return self.num_selected_samples
[docs] def set_epoch(self, epoch): self.epoch = epoch